Combining Shell Commands In Linux

In Linux, you can combine multiple shell commands to perform
more complex tasks using various techniques. This allows you to
create powerful one-liners or scripts that accomplish multiple actions
in a single command line. Here are some ways to combine shell
commands:

Pipeline (|): The pipeline operator allows you to send the output of
one command as the input to another. This is useful for chaining
commands together.

commandl | command?

For example, to list all files in a directory and then count the number
of files, you can use:

Command Substitution ($() or ") : Command substitution lets you
use the output of one command as an argument for another.

bash

variable=%{command}

For instance, to store the output of the date command in a variable,
you can use:

bash

current_date=%{date)

Sequential Execution (;): You can use a semicolon to execute
commands sequentially, one after another.

commandl ; command?2

For example, to create a new directory and then change into that
directory, you can use

bash

mkdir new_directory ; cd new_directory

Logical Operators (&& and ||): These operators allow you to run the
second command only if the first one succeeds (&&) or fails (||).

bash

commandl && command2

commandl || command2

To remove a file if it exists and then create a new file, you can use:

bash

™m file.txt &% touch file.txt

Grouping Commands (()): Parentheses are used to group commands,
enabling you to apply operations to the group as a whole.

(commandl ; command2) ; command3

For example, to change to a directory, run a command, and then return
to the previous directory, you can use:

cd directory ; command ;

These techniques allow to create complex command sequences that
perform multiple tasks in a single line. Combining commands in Linux
Is an efficient way to streamline your workflow and achieve more with
fewer lines of code.

